Photoluminescence Blinking of Single-Crystal Methylammonium Lead Iodide Perovskite Nanorods Induced by Surface Traps
نویسندگان
چکیده
Photoluminescence (PL) of organometal halide perovskite materials reflects the charge dynamics inside of the material and thus contains important information for understanding the electro-optical properties of the material. Interpretation of PL blinking of methylammonium lead iodide (MAPbI3) nanostructures observed on polycrystalline samples remains puzzling owing to their intrinsic disordered nature. Here, we report a novel method for the synthesis of high-quality single-crystal MAPbI3 nanorods and demonstrate a single-crystal study on MAPbI3 PL blinking. At low excitation power densities, two-state blinking was found on individual nanorods with dimensions of several hundred nanometers. A super-resolution localization study on the blinking of individual nanorods showed that single crystals of several hundred nanometers emit and blink as a whole, without showing changes in the localization center over the crystal. Moreover, both the blinking ON and OFF times showed power-law distributions, indicating trapping-detrapping processes. This is further supported by the PL decay times of the individual nanorods, which were found to correlate with the ON/OFF states. Furthermore, a strong environmental dependence of the nanorod PL blinking was revealed by comparing the measurements in vacuum, nitrogen, and air, implying that traps locate close to crystal surfaces. We explain our observations by proposing surface charge traps that are likely related to under-coordinated lead ions and methylammonium vacancies to result in the PL blinking observed here.
منابع مشابه
Ultrahigh sensitivity of methylammonium leadtribromide perovskite single crystals toenvironmental gases
D ow nladed fom One of the limiting factors to high device performance in photovoltaics is the presence of surface traps. Hence, the understanding and control of carrier recombination at the surface of organic-inorganic hybrid perovskite is critical for the design and optimization of devices with this material as the active layer. We demonstrate that the surface recombination rate (or surface t...
متن کاملStructure of methylammonium lead iodide within mesoporous titanium dioxide: active material in high-performance perovskite solar cells.
We report the structure of methylammonium lead(II) iodide perovskite in mesoporous TiO2, as used in high-performance solar cells. Pair distribution function analysis of X-ray scattering reveals a two component nanostructure: one component with medium range crystalline order (30 atom %) and another with only local structural coherence (70 atom %). The nanostructuring correlates with a blueshift ...
متن کاملCritical Role of Methylammonium Librational Motion in Methylammonium Lead Iodide (CH3NH3PbI3) Perovskite Photochemistry.
Raman and photoluminescence (PL) spectroscopy are used to investigate dynamic structure-function relationships in methylammonium lead iodide (MAPbI3) perovskite. The intensity of the 150 cm-1 methylammonium (MA) librational Raman mode is found to be correlated with PL intensities in microstructures of MAPbI3. Because of the strong hydrogen bond between hydrogens in MA and iodine in the PbI6 per...
متن کاملPhotocurrent Mapping in Single-Crystal Methylammonium Lead Iodide Perovskite Nanostructures.
We investigate solution-grown single-crystal methylammonium lead iodide (MAPbI3) nanowires and nanoplates with spatially resolved photocurrent mapping. Sensitive perovskite photodetectors with Schottky contacts are fabricated by directly transferring the nanostructures on top of prepatterned gold electrodes. Scanning photocurrent microscopy (SPCM) measurements on these single-crystal nanostruct...
متن کاملEmission Enhancement and Intermittency in Polycrystalline Organolead Halide Perovskite Films.
Inorganic-organic halide organometal perovskites have demonstrated very promising performance for opto-electronic applications, such as solar cells, light-emitting diodes, lasers, single-photon sources, etc. However, the little knowledge on the underlying photophysics, especially on a microscopic scale, hampers the further improvement of devices based on this material. In this communication, co...
متن کامل